Конструирование индексов и шкалСтраница 4
Распределение кумулятивных (накопленных) процентов позволяет вычислить значения медианы и междуквартильного размаха. Медиана, или процентиль 50 в распределении накопленных частот, — это такое значение на шкале «А» — «К», относительно которого половина судей дала большие, а другая половина — меньшие оценки данного утверждения. Медиана, таким образом, делит пополам упорядоченное множество значений признака. Вычислить медиану мы можем по следующей формуле: www.transponet.ru
В методе Терстоуна ширина интервала между соседними численными градациями по определению равна 1 (равнокажущиеся интервалы). В используемом нами примере границами интервала, где расположена медиана (процентиль 50), являются градации «F» и «G» (см. табл. 1). Фактической нижней границей интервала медианы будет значение 6,5, отсюда:
Значение медианы и принимается за шкальный балл («цену») суждения. Для гипотетического суждения N в нашем примере он оказался равен 6,7. (В принципе более простым является графический метод нахождения медианы. Для этого
на миллиметровой бумаге строится кривая накопленных процентов — огива, позволяющая легко найти числовое значение, соответствующее процентилю 50.)
Ясно, однако, что не все суждения, получившие оценку «судей», в равной мере пригодны для шкалы: некоторые из суждений получат весьма согласованные и единодушные оценки экспертов, тогда как другие вызовут разнобой во мнениях. Для оценки внутренней согласованности отдельных высказываний шкалы Терстоун применил меру разброса судейских оценок — междуквартильный размах. (Здесь снова вместо распределения абсолютных частот экспертных оценок используется распределение процентилей, т. е. накопленные частоты выражают в кумулятивных процентах, что позволяет сравнивать выборки разного объема.) Междуквартильный размах — это расстояние между первым и третьим квартилем распределения. Первый квартиль (Q1) задается точкой на оси, до которой лежит 25% полученных оценок суждения, а третий ((Q3) — точкой, выше которой лежит 25% оценок. (Легко видеть, что второму квартилю соответствует медиана.) Для вычисления междуквартильного размаха (Q3 ¾ Q1) сначала устанавливаются значения, соответствующие первому и третьему квартилям распределения. Для этого используются формулы, аналогичные формуле для медианы, с соответствующими поправками: берется фактическая нижняя граница интервала соответствующего квартиля, кумулятивный процент для нижней границы интервала данного квартиля и т. д. Так, для первого квартиля формула подсчета такова:
Для нашего примера с суждением N:
Читатель может самостоятельно выписать аналогичную формулу для третьего квартиля (75 процентиль), произвести необходимые подсчеты и убедиться, что для вымышленного суждения N междуквартильный размах (Q3 ¾ Q1) составит 1,7. Те суждения, для которых разброс оценок, измеренный через междуквартильный размах, оказывается слишком велик, исключаются из шкалы Терстоуна. Предполагается, что высказывание, получившее столь разные оценки, воспринимается слишком неоднозначно. Так, Терстоун исключил из первоначально предъявленного «судьям» списка 90 высказываний из 130. В результирующей шкале оставляют одно-два высказывания для каждого деления шкалы, чтобы все градации предполагаемого установочного континуума оказались в равной мере представлены.
Если получившуюся шкалу предъявить теперь группе респондентов, то индивидуальным баллом каждого субъекта, выражающим меру «благожелательность» его установки, можно считать медиану (или средний балл) всех суждений, с которыми он согласился.
Многие критики шкалы Терстоуна указывали на возможность влияния на получаемые результаты характеристик «судейской» группы и широты диапазона предлагаемых суждений. Все же существуют веские основания считать, что такая шкала обладает вполне удовлетворительной воспроизводимостью и в среднем диапазоне дает уровень измерения, превосходящий ординальный (является так называемой шкалой разностей). Удаление или прибавление пункта шкалы не меняет шкальных значений других пунктов-высказываний. Приведем некоторые примеры высказываний, включенных Терстоуном в окончательный вариант шкалы установок по отношению к церкви (в скобках указан шкальный балл суждения):
· «Я думаю, что церковь – это наиважнейший социальный институт в современной Америке» (0,2);
· «Когда я нахожусь в храме, мне доставляет удовольствие наблюдать за службой, особенно если при этом звучит хорошая музыка» (4,0);
Похожие статьи:
Социология Вебера
Немецкий мыслитель Макс Вебер сыграл выдающуюся роль в развитии социологии в конце прошлого и начале нынешнего века. Макс Вебер родился 21 апреля 1864 года Вебер окончательно выбирает для себя аскетический образ жизни В 1910 г. он основа ...
Основные социальные проблемы пожилых граждан в РФ
Структурная перестройка общества неизмеримо усилила проблемы пожилого населения страны, что напрямую сказалось на сокращении продолжительности жизни и основных характеристиках социального положения пожилых граждан в России.
Средняя продо ...
Преобразовательная функция
Суть преобразовательной функции социологии в том, что выводы, рекомендации, предложения социолога, его оценка состояния социального субъекта служит основанием для выработки и принятия определенных решений. Уже всем ясно, что при реализаци ...